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Abstract
A new method is presented for calculating the Stokes multiplier for the Landau–
Zener model. This method is based on the coupled wave integral equations
suggested by Hinton. The calculations are reduced to the matching of the
solution of the third-order recursion relation to the asymptotic Birkhoff set. An
analytical application of the method is given for the perturbation theory limit
at the energy equal to zero.

PACS numbers: 03.65.Nk, 03.65.Vf, 34.10.+x

1. Introduction

The Landau–Zener model is certainly the most known quantum model of two interacting
states. A pioneering approach to this problem, presented in the early papers [1, 2], has been
subsequently elaborated in the frame of the semiclassical approximation by matching of the
classical and the quantum regions [3–6].

The semiclassical level of description is based on a time-dependent approach, leading
to a well-studied biconfluent hypergeometric equation (the parabolic cylinder equation). The
full quantum–mechanical problem reduces to a triconfluent Heun equation, whose solutions
are still not sufficiently known. In the momentum representation, the quantum equations are
transformed into the semiclassical ones by the expansion of the equations in the neighborhood
of the classical correspondence of momentum and energy. Thus, the threshold domain, which
is the most important in physics, is not covered by the time-dependent approach basically.

A full quantum description of the systems with linear potentials has been given rather
recently in [7, 8]. In this description, the probability of transitions is related to the Stokes
multiplier, which determines the change of asymptotic expansions as a Stokes line is crossed.
In [9], Hinton presents the method for calculating the Stokes multipliers for a definite class of
linear second-order ordinary differential equations. The method is based on the integral form
of equations and includes calculations of Thomé asymptotic series [10]. The Stokes multipliers
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are obtained in the form of convergent infinite series, which comprises the coefficients of two
distinct recurrences.

To calculate the Stokes multiplier for the Landau–Zener model, the authors of [7, 8] have
considered the Schrödinger equation with the fourth degree polynomial potential. In physics,
the analogous equation is analyzed in connection with the quartic oscillator problem [11–13].
In mathematics, it is known as a triconfluent Heun equation [14, 15].

The triconfluent Heun equation does not belong to the class of equations discussed
by Hinton. The Stokes multipliers for the Landau–Zener problem have been calculated in
[7, 8] by generalizing the coupled wave integral equation method. Applying this approach,
the authors of [8] have found that the procedure for the Stokes multiplier calculation is highly
cumbersome and the results are not transparent for analytical analysis. As a consequence, to
treat the new physical result, they have used the modifications of semiclassical approximation
[16].

In this paper, we are intended to construct a compact method for calculating the Stokes
multiplier for the standard Landau–Zener model, which could be convenient for numerical
calculations and analytical approximations.

The paper is organized as follows. Section 2 contains the formulation of the problem
in the p-representation. In section 3, we obtain the Stokes multiplier as the limit of the
expression, which includes the Thomé coefficients. This limit is calculated in section 4 by
matching the Thomé coefficients to the Birkhoff solutions [17]. The S-matrix and perturbation
approximation in the recurrence method frame are presented in section 5. The conclusion
summarizes the results and outlines the future prospects.

2. Formulation of the problem

The Landau–Zener model is defined by the two coupled equations for the components of the
wavefunction [5]:

− h̄2

2m

d2χ1

dx2
− F1xχ1 − Eχ1 + V χ2 = 0, (1)

− h̄2

2m

d2χ2

dx2
− F2xχ2 − Eχ2 + V χ1 = 0. (2)

The parameters F1,2 and V are considered to be positive real. In what follows, we assume

F1 > F2. (3)

Analyzing equations (1) and (2), Nikitin and coauthors in [18] have shown that transformation
into the p-representation,

χ1,2 = √
F2,1

∫ +i∞

−i∞
exp(px/h̄)ϕ1,2(p)dp, (4)

leads to the system of two coupled equations of first order:

−
(

p2

2m
+ E

) √
F2/F1 ϕ1 + h̄

√
F1F2

dϕ1

dp
+ V ϕ2 = 0, (5)

−
(

p2

2m
+ E

) √
F1/F2 ϕ2 + h̄

√
F1F2

dϕ2

dp
+ V ϕ1 = 0. (6)

With dimensionless variable and parameters
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z = V

h̄
√

F1F2
p, (7)

F = h̄2√F1F2

2mV 3
(F1 + F2), (8)

f = h̄2√F1F2

2mV 3
(F1 − F2), (9)

ε = mV 2E

h̄2F1F2
, (10)

the system of equations (5) and (6) looks as follows:

−
(

z2

2
+ ε

)
(F − f ) ϕ1 +

dϕ1

dz
+ ϕ2 = 0, (11)

−
(

z2

2
+ ε

)
(F + f ) ϕ2 +

dϕ2

dz
+ ϕ1 = 0. (12)

For the new functions,

ψ1,2 = exp

[
−(F ∓ f )

(
z3

6
+ εz

)]
ϕ1,2, (13)

it is converted into the equations

dψ1

dz
= −e�ψ2, (14)

dψ2

dz
= −e−�ψ1, (15)

where

�(z) = 2f

(
z3

6
+ εz

)
. (16)

We take the solution [ψ1, ψ2] of the system of equations (14) and (15), which is recessive
in the domain |arg(z)| < π/6. This solution satisfies the boundary conditions

ψ1(+∞) = 1, ψ2(+∞) = 0, (17)

and the following integral equations:

ψ1(z) = 1 −
∫ z

∞
e�(t) ψ2(t) dt, (18)

ψ2(z) = −
∫ z

∞
e−�(t) ψ1(t) dt. (19)

The asymptotic expansion of this solution in the domain −π/3 < arg(z) < 2π/3 is given by

ψ1 = C + RC + T �(z) (D + RD) , (20)

ψ2 = A + RA + T �(z) (B + RB) , (21)

where T is the Stokes multiplier, the function �(z) is defined as

�(z) =
{

0, arg(z) < π/3
1, arg(z) � π/3,

(22)

3



J. Phys. A: Math. Theor. 43 (2010) 145203 V I Osherov and V G Ushakov

and the functions A, B, C and D are the Thomé normal solutions,

C =
N−1∑

0

cnz
−n, RC = O(cN z−N), (23)

A = e−�

N∑
2

anz
−n, RA = O(e−�aN+1 z−N−1), (24)

D = e�

N∑
2

dnz
−n, RD = O(e�dN+1 z−N−1), (25)

B =
N−1∑

0

bnz
−n, RB = O(bN z−N). (26)

The positive integer number N is limited by the inequality

N � 2. (27)

Asymptotic expansion of the solution in the domain −2π/3 < arg(z) < π/3 is also given
by expressions (20) and (21), where the parameter T is replaced by its complex conjugate and
the function �(z) is replaced by the function �̃(z):

�̃(z) =
{

0, arg(z) > −π/3,

1, arg(z) � −π/3.
(28)

Substituting the expressions for C and A into equations (14) and (15), and using the
condition

c0 = 1, (29)

which follows from the boundary condition (17), we find

cn = an+1

n
, n � 1, (30)

a2 = 1

f
, a3 = a2

f
, a4 = a3

2f
− 2εa2, (31)

f an+2 + 2f εan + (n − 1)an−1 = an+1

n
= cn, n � 3. (32)

Analogous calculations for the functions D and B with the condition

b0 = 1, (33)

which defines the Stokes multiplier T, lead to the expressions

bn = dn+1

n
, n � 1, (34)

d2 = − 1

f
, d3 = −d2

f
, d4 = − d3

2f
− 2εd2, (35)

−f dn+2 − 2f εdn + (n − 1)dn−1 = dn+1

n
= bn, n � 3. (36)

Recursion relations (32) and (36) are formally valid for n < 3 if coefficients ai and di with
i < 2 are considered to be equal to zero while an+1/n and dn+1/n are replaced by 1 for n = 0.

4
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3. The Stokes multiplier representation

Calculating derivatives of Thomé solutions (23)–(26), we find

dA

dz
= −e−�[C(z) + P(z)], (37)

dD

dz
= −e�[B(z) + P̃ (z)], (38)

dC

dz
= −e� A, (39)

dB

dz
= −e−� D, (40)

where

P(z) = −f aN+1 z−N+1 + [2f εaN + (N − 1)aN−1] z−N + NaN z−N−1, (41)

P̃ (z) = f dN+1 z−N+1 + [−2f εdN + (N − 1)dN−1] z−N + NdN z−N−1. (42)

Using equations (37)–(40), we substitute asymptotic expansions (20) and (21) into integral
equations (18) and (19). Then, equation (18) leads to a trivial identity. Equation (19) reduces
to the following form:

T �(z) + O(e−�aN+1 z−N−1) + O (cNIN)

= f aN+1IN−1 − [2f εaN + (N − 1)aN−1] IN − NaNIN+1, (43)

where

In =
∫ ∞

z

e−�(t) t−ndt. (44)

In the domain |arg(z)| < π/3, at z → ∞, this integral is estimated as

In = O

(
1

f
e−� z−n−2

)
. (45)

At arg(z) > π/3, it can be represented in the form

In = 1

3

∮
L1+L2

e−fy/3 exp(−2f εy1/3)

y(n+2)/3
dy, (46)

where the contour L1 is the straight line from y = z3 to y = +∞ exp(2iπ) and the contour L2

is going from y = +∞ exp(2iπ) to y = +∞ circumventing the singular point y = 0 in the
negative direction. At z → ∞, the behavior of the first integral in equation (46) is given by
estimation (45):∮

L1

e−fy/3 exp(−2f εy1/3)

y(n+2)/3
dy = O

(
1

f
e−� z−n−2

)
. (47)

Then, introducing the notation

tn = 1

3

∮
L2

e−fy/3 exp(−2f εy1/3)

y(n+2)/3
dy, (48)

we get for the domain arg(z) < 2π/3

In = O

(
1

f
e−� z−n−2

)
+ tn �(z). (49)
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Substitution of this equation into equation (43) results in

�(z) [TN + O (cN tN) − T ] = O(e−�aN+1 z−N−1), (50)

where

TN = f aN+1tN−1 − [2f εaN + (N − 1)aN−1] tN − NaNtN+1. (51)

From equation (50), we get

T = TN + O (cN tN) . (52)

Taking into account

lim
N→∞

O (cN tN)

aN+1tN−1
= 0, (53)

we finally obtain the basic expression for the Stokes multiplier T,

T = lim
N→∞

TN. (54)

The alternative form of the Stokes multiplier can be obtained using the properties of the
integral tn (equation (48)). Calculating this integral by part, we get the recursion relation

f tn + 2f ε tn+2 + (n + 2) tn+3 = 0. (55)

Application of this result to definition (51) of the parameter TN together with the recursion
relation (32) results in the equality

TN+1 = TN + cN tN , (56)

where N � 2.
It follows from equation (56) that

T = T2 +
∞∑

n=2

cntn. (57)

The parameter T2 can be found using definition (51) and recurrence (55):

T2 = c0t0 + c1t1. (58)

Finally, we obtain the Stokes multiplier T in the following form:

T =
∞∑

n=0

cntn. (59)

Particularly, from this it follows that

T = lim
N→∞

∫ +∞

+∞ e2iπ/3
e−�(t)C(t) dt. (60)

This expression has the evident interpretation. As follows from equations (21), (24) and (26),
the value of the function ψ2 at z = +∞ e2iπ/3 is equal to T. Then, equation (60) reads: the
value of the function ψ2 at z = +∞ e2iπ/3 can be calculated using the approximate Thomé
normal solution C in the integrand of equation (19).

6
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4. Matching to the Birkhoff set

In this section, we calculate the limit in equation (54). To this end, we must find the asymptotic
behavior of the integral tn, which is given by equation (48), and match the solution of recurrence
(32) to the Birkhoff asymptotic set.

The asymptotic form of the integral tn is given by the saddle point method. The saddle
points are the roots of the equation

y +
n + 2

f
+ 2εy1/3 = 0. (61)

At large n, this equation can be solved taking into account that the term 2εy1/3 is a small
perturbation. Three roots of equation (61) are found to have the phases close to −π , +π and
3 π . When moving along the contour L2, the phase of the variable y is changed between 0 and
+2π . As a result, only one saddle point contributes to the integral, namely, the point which
has the phase close to +π . Calculating the contribution of this point, we finally obtain

tn =
√

2π

3f
exp

[
−n + 1/2

3
ln

n

f
+

n

3
− iπ(n + 1/2)

3
− 2f ε eiπ/3

(
n

f

)1/3
]

. (62)

The asymptotic form of the coefficients an in the Thomé normal solution A, equation (24),
is the linear combination of the Birkhoff asymptotes fitted to the solution of the recursion
relation (32), which is defined by the initial conditions (31). Three asymptotic Birkhoff
solutions can be found by fitting the coefficients in the Birkhoff series. However, we calculate
the asymptotic solutions directly from the recursion relation. This strategy is preferable for
the matching process when the detailed asymptotic behavior is significant.

At large n, we take

an = exp(Sn), (63)

and we use the Taylor expansion

Sn+k = Sn + S ′k + 1
2S ′′ k2 + · · · (64)

In the first approximation, at large n, the recurrence (32) can be reduced as follows:

f an+3 + nan = 0. (65)

This results in three branches of Sn:

S ′ = 1

3
ln

n

f
+ iϕ, ϕ = −π

3
,
π

3
, π. (66)

Then, the second derivative, S ′′, is equal to

S ′′ = 1

3n
. (67)

In the next approximation, we must take into account the second derivative of S in the
first term of the recursion relation (32). Using the notation

q = exp(S ′), (68)

we rewrite this relation in the form

f

(
1 +

3

2n

)
q3 − q2

n
+ 2f εq + n = O

(
1

n2/3

)
. (69)

7
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The solution of this equation can be obtained using the perturbation technique and the first
approximation given above. Finally, we get three branches

Sn = −1

2
ln n +

n

3
ln

n

f
− n

3
+ iϕn + 2f ε eiϕ

(
n

f

)1/3

+
e2iϕ

f

(
1 +

(2f ε)2

6

)(
f

n

)1/3

+ O

(
1

n2/3

)
. (70)

These three branches define three Birkhoff solutions (63).
The recurrence (32) with the real initial conditions (31) has the real solution. Therefore,

at ε �= 0, the asymptotic behavior of the coefficients an can be expressed as a proper real linear
combination of two maximal Birkhoff solutions:

an = P exp

[
−1

2
ln n +

n

3
ln

n

f
− n

3
+ f ε

(
n

f

)1/3
]

× cos

[
πn

3
+ f ε

√
3

(
n

f

)1/3

+ η

]
, (71)

where P and η are the real functions of the parameters f and ε.
Now, using definitions (54) and (51), and asymptotic expressions (62) and (71), the Stokes

multiplier T is obtained in the nice form,

T = iP

√
3π

2
eiη. (72)

The expression for the Stokes multiplier T in equation (72) is the main result of this work.
Two parameters, P and η, are given by the asymptotic values of the amplitude and the phase of
the solution of recurrence (32), respectively. On the other hand, as follows from the form of
the S-matrix (see below), these two parameters have evident physical meaning. The parameter
P defines the probability of nonadiabatic transitions and the phase η can be considered as
an accurate analytical generalization of the semiclassical Stückelberg phase. For practical
applications, these two parameters can be easily calculated numerically.

5. The S-matrix in terms of the Stokes multipliers

The Stokes multiplier T defines the basic characteristic of the Landau–Zener problem—the S-
matrix, which connects the amplitudes of incoming and outgoing waves in the general solution
of basic equations (1) and (2). The general solution can be found as a linear combination of
two independent solutions. The first of them,

[
χ

(1)
1 (x), χ

(1)
2 (x)

]
, is defined by the solution[

ψ
(1)
1 (z), ψ

(1)
2 (z)

]
of the integral equations (18) and (19). Using the symmetry properties of

differential equations (14) and (15), the second independent solution in z-representation can
be written in the form

ψ
(2)
1 (z) = ψ

(1)
2 (−z), ψ

(2)
2 (z) = −ψ

(1)
1 (−z). (73)

For calculating the integrals in equation (4) for amplitudes χ1,2(x) at large x, we use the
method of steepest descent. In the vicinities of the saddle points, we replace the accurate
solutions,

[
ψ

(1)
1 , ψ

(1)
2

]
and

[
ψ

(2)
1 , ψ

(2)
2

]
, by their asymptotic expansions at z → ∞. As a

result, the asymptotic behavior of two independent solutions in x-representation is found as

χ
(1)
1 = c√

P1

[
exp

(
i

h̄
S1 − iπ

4

)
+ exp

(
− i

h̄
S1 +

iπ

4

)]
,

χ
(1)
2 = c√

P2

[
T exp

(
i

h̄
S2 − iπ

4

)
+ T ∗ exp

(
− i

h̄
S2 +

iπ

4

)]
,

(74)

8
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and

χ
(2)
1 = c√

P1

[
T ∗ exp

(
i

h̄
S1 − iπ

4

)
+ T exp

(
− i

h̄
S1 +

iπ

4

)]
,

χ
(2)
2 = − c√

P2

[
exp

(
i

h̄
S2 − iπ

4

)
+ exp

(
− i

h̄
S2 +

iπ

4

)]
,

(75)

where

c = i
√

2πh̄mF1F2, (76)

P1,2 =
√

2m(E + F1,2x), (77)

S1,2 =
∫ x

P1,2(x) dx = P 3
1,2

3mF1,2
. (78)

Consequently, the general solution, [χ1(x), χ2(x)], at x → ∞ presents the superposition of
incoming and outgoing waves:

χ1 = a+
1√
P1

exp

(
i

h̄
S1 − i

π

4

)
+ a−

1√
P1

exp

(
− i

h̄
S1 + i

π

4

)
, (79)

χ2 = b+
1√
P2

exp

(
i

h̄
S2 − i

π

4

)
+ b−

1√
P2

exp

(
− i

h̄
S2 + i

π

4

)
. (80)

Here the amplitudes of waves are connected by the S-matrix(
a+

b+

)
= S

(
a−
b−

)
(81)

with

S = 1

1 + |T |2
(

1 + T ∗2, T − T ∗

T − T ∗, 1 + T 2

)
. (82)

In [8], Nakamura and coauthors have already obtained a similar expression relating the
Stokes multipliers and the S-matrix for the Landau–Zener problem. To compare their results
with expression (82), we should take into account the differences in the definitions of the
amplitudes in p-representation in the present paper and the cited paper. Also, in defining the
Stokes multipliers, we used the normal Thomé solutions, while the authors of [8] preferred
the standard WKB asymptotes. Given these differences, formula (82) coincides with the
expression given in [8].

The procedure for calculating the S-matrix developed in sections 2–5 is applicable for any
values of the parameters of the standard Landau–Zener model. In particular, it is effective at
the threshold energy, where the Birkhoff limit is reached rather quickly. The method can be
generalized to the nonadiabatic tunneling and opposite signs of slopes of potentials. It contains
only one recurrence and, therefore, it is much more compact than the method proposed in the
pioneering work [8].

5.1. Example of the analytical solution in the perturbation theory limit

The S-matrix (82) can be found analytically in the recurrence method frame at ε = 0, f 	 1.
Since the condition ε = 0 is fulfilled, equations (31) and (32) read

a2 = 1

f
, a3 = a2

f
= 1

f 2
, a4 = a3

2f
= 1

2f 3
, (83)

9
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f an+3 + n an = an+2

n + 1
, n � 2. (84)

Because of the condition f → ∞, the coefficients an with n �= 3k + 2, where k = 0, 1, 2, . . . ,
can be considered to be equal to zero. Then, the recursion relation for coefficients an with

n = 3k + 2, k = 1, 2, 3, . . . , (85)

is simplified as follows (cf equation (65)):

f an+3 + n an = 0. (86)

This recurrence has the solution

a3k+2 = (−1)k
3k
(k + 2/3)


(2/3)f k+1
. (87)

At large values of n, n = 3k + 2, this solution is approximated as

an = (−1)k
1


(2/3)f k+1

√
2π

n/3
exp

(
n

3
ln

n

3
− n

3
+ k ln 3

)
. (88)

To find the coefficient P and the phase η in the expression of equation (72), we match
the asymptotic expression in equation (88) with the Birkhoff asymptotic solutions. It should
be noted that in the case under consideration (ε = 0), all Birkhoff solutions have the same
order, and, therefore, all three solutions must be included in the matching procedure. So, the
general form of the asymptotic behavior of the real solution of recurrence (84) is given by
(cf equation (71))

an = Pf −n/3n−1/2 exp

(
n

3
ln

n

3
− n

3

)
cos

(
πn

3
+ η

)

+ P1(−1)nf −n/3n−1/2 exp

(
n

3
ln

n

3
− n

3

)
. (89)

This expression must coincide with the expression in equation (88) for n = 3k + 2, while for
the case n �= 3k + 2, it must generate zeros. These conditions are satisfied at

η = −2π

3
, (90)

P1 = P

2
, (91)

P =
√

2

π


(1/3)

32/3f 1/3
. (92)

Finally, we get the analytical expression for the Stokes multiplier T,

T = 
(1/3)

31/6f 1/3
e−iπ/6, (93)

and the amplitude of nonadiabatic transition S12,

S12 = −i

(1/3)

31/6f 1/3
. (94)

This result coincides with the result obtained by the perturbation theory approach [19].

10
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6. Conclusion

Formulae (31), (32), (71) and (72) give the compact ansatz to the calculation of the Stokes
multiplier for the Landau–Zener problem. It includes the solution of the third-order recursion
relation for the Thomé coefficients and asymptotic matching to the Birkhoff set. The
matching gives the amplitude and the phase of the Stokes multiplier directly. The form
of the S-matrix (82) shows that the asymptotic phase of the Thomé coefficients controls
the oscillations of nonadiabatic transition amplitude and defines the Stückelberg phase [20]
correctly. Particularly, this gives the possibility of formulating the exact quantization condition
for the nonadiabatic resonances.

Possibly, the analytical solutions to the Thomé recurrences (see [21]) can be found not
only in the perturbation limit [19]. Also, we hope that the approach proposed can be employed
for the analysis of the general triconfluent Heun equation, which could result in the exact
quantization condition for the levels of the quartic oscillator.
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